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Abstract. A new analytical method is proposed for solving the Hubbaid model in d- 
dimensions. The method permits. in principle, the study of the Hubbard model at any 
temperature and any band filling. The accuracy of the method is tested against known Bethe 
ansatz results of Lieb and Wu and against known weak- and strong-coupling expansion 
results. The one-dimensional path integral solution obtained for the ground state (half-filled 
band case) is in excellent qualitative agreement with Bethe ansatz results for all couplings 
and exactly reproduces weak- and strong-coupling expansion results. 

1. Introduction 

The model proposed by Hubbard more than two decades ago [I] is still under active 
investigation. There are many reasons why this model has been studied for so many 
years. Some reasons are well summarised in a recent theoretical paper [2]; others can 
be found in a recent review article [3]. The Hubbard model has lately attracted special 
attention in connection with the phenomenon of high-temperature superconductivity 
[4]. It is believed to be a likely candidate for the model which describes this phenomenon. 
In view of great technical difficulties of the rigorous theoretical treatments of the 
Hubbard model, attempts have been made to study the above model by Monte Carlo 
methods. In a recent paper [5]  the results of Monte Carlo calculations are presented for 
the three-dimensional half-fi:l!!ed band mode! at a k i t e  temperzture en a simple cubic 
4’ and some 6’ lattices with periodic boundary conditions. Because of the small size of 
the lattices, it was difficult to take into account the role of the boundary effects or to 
study the limit of very low temperatures. Moreover, as was first rigorously established 
in [6], in the strong-coupling limit, the results for the three-dimensional Hubbard model 
depend on the lattice structure. In particular, for the slightly less (or slightly more) than 
half-filled band the ferromagnetic state is the ground state for the simple cubic and body- 
centred cubic lattices, but not for the face-centred or hexagonal close-packed structures. 
This result in [6] presents a real challenge for the existing Monte Carlo simulations. 
Apart from important practical applications of the Hubbard model, there are at least 
two other reasons for studying this model. The first comes from the fact that the 
one-dimensional version of the Hubbard model represents an example of an exactly 
integrable model. This model was solved some time ago by the Bethe ansatz methods 
by Lieb and Wu [7] .  This then poses the following problem: if there is an exact many- 
body result obtained by whatever means other than the path integral, what could be said 
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about the exact path integral solution of the same problem? Evidently, the answer to 
this question is directly related to the question of how accurately, in principle, the Monte 
Carlo calculations could be done for the exactly integrable models. The second reason 
can be formulated as follows: if there is a way to obtain an exact path integral solution 
for the exactly integrable model, how might it be modified in those cases when the model 
is no longer exactly integrable? Here I would like to provide some answers to the 
questions posed above. 

This paper is organised as follows. In § 2 the microscopic Hubbard and extended 
Hubbard models are defined together with the necessary general type of results to 
be discussed in the subsequent sections. In § 3 a finite-temperature strong-coupling 
expansion for the Hubbard model is provided. The technical results of this section are 
then used in § 4. This section provides the path integral solution for the Hubbard dimer 
problem. The new technical elements introduced here permit the generalisation of the 
Hubbard dimer problem to the case of the Hubbard model in an arbitrary number of 
dimensions which is accomplished in § 5 .  The results of such a generalisation for the case 
of one dimension are then compared against the exact Bethe ansatz results of Lieb and 
Wu [7] and presented in figure 1. These results coincide exactly with known weak- and 
strong-coupling expansion results and are in excellent qualitative agreement with Bethe 
ansu~z results for all couplings. Section 6 is devoted to a brief conclusion and outlook. 

I 

10 0 2 4 6 8 
U 

Figure 1. Ground-state energy (per site and per spin) as a function of the coupling constant 
U 0, the solution of Lieb and Wu (equation (2.3)): A ,  equation (5.5). 

2. The microscopic model: general results 

The Hubbard Hamiltonian HH is well described in the literature [3]. For the purposes 
of comparison, I would like to present here only the one-dimensional version of HH. In 
one dimension, one has 

5 
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I shall also consider briefly the so-called extended Hubbard model given by the Ham- 
iltonian HHE as [SI 

N 

H H E  = HH + v 2 nlnL+i. (2.2) 
r=l 

Here cite and cr,o are the usual Fermi creation and annihilation operators, respectively, 
for an electron with spin o ( t or 1 at site i, n,, = cLc,, , n, = nr + n," , tis the transfer 
integral and the coupling constants U and V represent the parts of CouIombic-type 
electron-electron interaction. The sign of tis actually unimportant as was already noted 
in [7]. In addition, one can, in principle, formally consider the cases when U or V are 
negative, thus extending the model beyond its original limits. Because of particle-hole 
duality, in the case of HH there is no need to consider separately the cases of negative 
and positive U as was already demonstrated in [7]. Application of the same idea to the 
extended Hubbard model (2.2) shows that the particle-hole symmetry is broken so that 
one should consider cases of positive and negative couplings separately. 

At zero temperature the model (2.1) was solved in [7] by means of the Bethe ansatz 
method. For the case of the half-filled band (one electron with spin up or down per lattice 
site), the following result ( t  = 1) for the ground-state energy (per site) was obtained in 
c71: 

whereJo(o) a n d J , ( o )  are the Bessel functions. III the limit U+ x ,  this produces (with 
t restored) 

€,(U-. x )  = -4t2(ln2)/U (2.4a) 

while in the opposite limit one obtains 

&(U = 0) = -4/12. (2.4b) 

The last result requires some comments. In the limit U = 0, the model (2.1) becomes 
effectively spinless. Such a spinless model was considered some time ago in [9] in 
connection with calculation of the energy spectrum for the antiferromagnetic chain. To 
understand the result (2.4b), it is sufficient to consider the Hamiltonian in equation 
(2.11) of [9] with appropriately rescaled value of the hopping integral (note in our case 
that t = 1). This then immediately produces 

(2.5) 
In the subsequent sections, in view of (2.4) and (2 .5) ,  I sha!l consider energies per site 
and per spin. 

Using the general results of Lieb and Wu, E o  was obtained in [lo] for arbitrary band 
fillings. Later the results of Lieb and Wu were extended in [ll] to the case of finite 
temperatures using the finite-temperature version of the Bethe ansatz as formulated in 
[12]. The solution obtained turns out to be so complicated that it was possible to check 
explicitly rather trivial limiting cases such as U-. 0, U-. x, T-. 0 (Lieb and Wu) and 
T+ x .  In the subsequent paper [ 1 I], only the low-temperature specific heat for the haif- 
filled band Hubbard model was calculated and other results are rather inconclusive as 
was acknowledged. The main achievement is the computation of the limiting value of 
the specific heat C: 

b o \ -  l? / T T  = n\ V I  - - -2/x E -9,6366. 

= (n/6) 10(12/2U)/ I l (n /2~)  (2.6) 
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where H is the magnetic field, and I o  and II are the Bessel functions of imaginary 
argument. I have recently used the result (2.6) for the computation of the central charge 
c, which for the half-filled band Hubbard model, turns out to be unity [13]. The central 
charge plays an important role in calculations of the finite-size corrections to the ground- 
state energy as is demonstrated in [14]. For completeness, I would like to present here 
the expression of Lieb and Wu for the gap. For the half-filled band case, they obtain 

( 2 . 7 ~ )  

( t  = 1) 

A(Uj  = Li - 2(2 + p! 

where 

(2.7b) 

Recently I have recomputed [15] the gap energy (2.7) using the formalism developed in 
[12] in order to investigate what happens to the gap at finite temperatures. As a result 
of such recomputation with the help of the formalism in [12], I found that the result 
( 2 . 7 ~ )  is actually valid only for rather strong couplings (U > 1) and, in addition, equation 
(2.70) should be replaced by 

A(u) = U - 2(2 + I )  (2.8) 
where I i s  obtained from I ,  given by equation (2.7b), by obvious rescaling U-. U/2 in 
(2.7b). In [2], it was demonstrated that for the half-filled band the gap A exists for all 
dimensions. 

Finally, modification of the Hubbard model given by equation (2.2) makes this model 
non-integrable so that there are no exact results available for this model. 

To proceed, I would like to consider briefly a single-site approximation for the 
Hubbard model. In spite of the fact that this approximation is rather trivial, it contains 
all the technical features needed for the subsequent development. Moreover, it is of 
some practical value as can be seen from the recent review article [16] devoted to the 
solid state applications of the above truncated model. Here I would like to emphasise 
only the technical side of the problem for reasons which were described in Q 1. 

The single-site Hubbard Hamiltonian is given by 

with ,u,being a chemical potential. The Hamiltonian (2.9) can easily be diagonalised in 
the single-site basis spanned by the vectors IO), 1 t ) = c l  IO), 1 J )  = c l  IO), 
1 t 4 ) = c i  c l  IO) with the eigenvalues 0, -,U -1.1 1 and U - p - ,U J , respectively. 
This permits one immediately to write the expression for the partition function: 

2 , s  = (1 + exP(pP T 1 + exPVP J 1 + eXPMP t + ,U & - (2.10) 

In terms of Grassmann path integral, one can write the partition function as [17] 

where 

(2. l l a )  

(2. l l b )  
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Here U = UT / h ,  t = 0 , 1 , 2 , .  . . , N - 1, X Z  = p?i, f l  = ( k T ) - ’ ,  with T being a tem- 
perature, n,, E ~ f , , q t n o ,  qdy,no - qO,,,,. Let us put constants fi and k equal to unity 
below. To obtain the result (2.10), one should use the Hubbard-Stratonovich trans- 
formation in computing (2.11). One has (for fixed t and n)  

- _  

(2.12) 

where X(x) is a pair of complex Bose fields given at each point t ,  n ;  Nis the normalisation 
factor and A ,A ; = -U .  Use of equation (2.12) permits one to rewrite (2.11) as 

(2.13) 

where 

a t  = ln (de t r )  = In ( T r ?  [exp (- ,,” d t ( q ,  + A  ;Xn; - p T n , ) ) l ]  

(2 .13~)  

= (d/dt)n n t  = v r q r .  

Similar expressions hold for a ~ with the obvious change of to k and of X to x. 
Following [18] the determinant (2.134 can be easily computed, thus providing the final 
result 

d e t t  = l + e x p ( B , u t  - A t  ] o p d r X ) = D t .  (2.14) 

Use of (2.14) together with a similar det; expression in (2.13) permits one to integrate 
out Bose fields, thusgiving the result (2.10) again. The above results are essentially used 
in the subsequent sections. 

3. Finite-temperature strong-coupling expansion for the Hubbard model 

The results in 0 2 permit me now to consider the strong-coupling expansion for the 
Hubbard model. The first leading term in such expansion was obtained some time ago 
in [19] (which contains some obvious misprints). The second-order results require 
considerable computational efforts if the conventional operator formalism is used, as 
was acknowledged in 1201. Although the resuits of these computations are in excellent 
agreement with the results obtained by the direct diagonalisation of the corresponding 
short-chain Hamiltonian 1211, the technical difficulties made the conventional operator 
approach impractical for the computation of the higher-order terms in the above strong- 
coupling expansions. I would like to demonstrate here that use of the path integral 
method makes the calculations almost as easy as calculations with the conventional 
(momentum space) Feynman diagrams. To proceed with the actual calculations, I need 
now to introduce some additional notations. Use of the results in [I71 and [18] permits 
one to write for the single-site fermionic Green function the following expressions: 

G (z, z’) = -eJ  / D  for t > z’ (3.1) 
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and 

G (t, t’) = e l  /D for t < t’. 

Here D was defined in equation (2.14) and 

el’ exp (t - t ’),u - jT: d t  A 2) ( 

(3.2) 

(3.3a) 

Similar expressions for G 1 are obtained with evident redefinitions of t onto 
onto x .  Now let 

and X 

HI = V i n i  ( 7 i t l . n ;  - q r n t  - (-L t + A 7 Z t n n r n ?  (3.4a) 

= p(Vm t 7 t.n- 1 . 7  + V i , n - r  1. T v tn T ) (3.4b) 

where p = t t .  Using the notations in § 2, I have now 

where 

(. . .) = Tr [ exp (- c H ?  1 . . .]/Tr [exp (- H ?  11. (3.6) 
in in 

Expanding now the exponent in the first term in equation (3.5) and averaging with the 
single-site Hamiltonian produces in the lowest order in 

iiT =In  jexp (- HJ )\  =In (1 + 422 (Hi HJ) + o(P))  (3.7) 
in f n 1.1’ 

where d corresponds to the first term in equation (3.5).  Combining the 
1 part analogously to equation (2.13): one obtains 

part with the 

Z = constant X [I IT d-2, &U, exp (- j0’ dt(fx)) det (det I x )  
I 

where det, is given by (2.14), etc. Let (. . .), denote the operation of averaging with 
respect to fields X(x) .  Then if the thermodynamic potential Q (per site) is defined as 

= -(1/N) In z (3.9) 
one obtains, using (3.8),  the following result: 

~ S Z  = -ln z,, - t 2 lo’ d t  d t ’  ((HqHq)),. (3.10) 
a 0 
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Use of Wick’s theorem and definitions (3.1)-(3.3) produces now the following result: 

t 7 jop dz lop d t ’  ((HZH;)), 

Use of equations (3.1)-(3.3) and straightforward averaging over the field x permits one 
to obtain without delay the following result (,U = ,U 1. = p) :  

4t2 
z:s ’ 

= - i,“ d t c  dz’ exp(B,u)(l + exp[/3,u - (t - t ’ )U]> 

x (1 + exp[/?,u - /+?U + (z - z’)U]] 

(3.12) 

This then, when combined with equation (3.10), produces the result which coincides 
with that obtained in [19] (in the limit when the magnetic field (in [19]) is zero). It is 
interesting here to compare the results (3.10) and (3.12) with the result of the exact 
Bethe ansatz calculations at zero temperature (equation (2 .4~~)) .  To do so, it is useful to 
recall 2 couple of well known formulae. First, using the notation in 8 2, one has for the 
occupation number aU per site the standard result 

(3.13) cy, = ( l / p N )  a(1n Z) /a ,uu .  

The ground-state energy (per site) E o  can be defined now as (/?I + x )  

(3.14) 

For the half-filled band (Y = cy = 4. Use of equation (2.10) together with (3.13) shows 
that the consistency is achieved (for (Y = (Y = 4) if p = p = U / 2 .  Use of equation 
(3.14) then producesfor the single-site model E o  = 0. Consider now equation (3.12) for 
the case /L = U/2 and /3 + W .  It is not difficult to see that. in this limit, one obtains just 
/3 t 2 / U .  Taking into account equations (3.10) and (3.14) together with the limitingresult 
for (3.12), one arrives at the final result 

Eo = -? /U (3.15) 

to be compared with the exact Bethe ansatz result ( 2 . 4 ~ ) .  The discrepancy (because of 
the factor of 4 In 2) can be explained, perhaps, on the basis of the fact that in the course 
of Bethe msatz calculations some sums are replaced by integrals [7,15] which inevitably 
introduce factors such as In 2. This feature is known from other statistical mechanics 
calculations [22]. Having obtained the result in the lowest order in t’ /U, one can, 
in principle, easily obtain the higher-order terms using the diagrammatic methods 
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developed in [23]. Instead, I would like to choose another route and to investigate the 
possibility of obtaining the closed-form results. 

4. The Hubbard dimer problem 

Recently the two-site Hubbard model in which atoms of the dimer are not frozen 
was considered [24!. This model can be described by the following Hubbard-Frolich 
Hamiltonian: 

H =  HH + HeL + HL (4.1) 
where HH was given in (2.1), and HeL and H L ,  respectively, are given as 

with i = 1, 2. . . . . In [24], it was shown that in the limit S = 0 the model can be solved 
exactly and when S # 0 it can be solved within certain limits (S-+ 0, o -+ O(x), etc). In 
the limit S = 0 by analogy with the single-site ansatz in § 2, it is convenient to introduce 
the following set of states: 

(i = 1,2)  IO), Ii) = c:; c:, 10) 

and 

Ih) = ( l / d q ( c ; A  c;, - c;, C?’.)lO). 

Now introduce IY) = 2, a,ij) withj = 0,1,2.  h and U, being some constant coefficients. 
This then permits one to diagonalise the Hubbard dimer with the following result for the 
spectrum (half-filled band) [24,25]: 

E = (U/2)[1 7 1/1 + 1 6 ( t / q 2 ] .  (4.4) 
In the limit flu-+ 0. one obtains evidently 

E -  7 4r”/C’ (4.5) 

to be compared with ( 2 . 4 ~ )  and (3.15). I shall return to this comparison later in the text. 
It is interesting to note at this point that, if the higher orders in the t / U  expansion of 
(4.4) are kept, the resulting series expansion would be of the same functional form as 
can be obtained by the direct integration of (2.31, namely one would have in both cases 
the following expansion: 

with bi being some known coefficients. This observation together with the relative ease 
of obtaining the result (4.4) naturally poses the following question: can the Hubbard 
dimer problem be solved exactly by the path integral method? I shall demonstrate here 
that this is indeed possible to a large extent. Moreover, the simplicity in obtaining the 
result (4.4) imposes an additional requirement: if there is a path integral method of 
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solution of the dimer problem, to be practical it should be rather simple. With this in 
mind, consider now the partition function for the dimer. One has 

where n = 1,2 ,  and 

with SH defined by the equation (2.11b). As in the single-site case, introduce now two 
sets of the auxiliary Bose fieldsgl(x i) andf2(x2) associated with each site via Hubbard- 
Stratonovich transformation (2.12). In addition, it is convenient to introduce two auxili- 
ary sets of Fermi fields (two for a given spin ( t or 1 )) via the relation 

and similar for the combination Vir 2 .  Here the spin indices are temporarily suppressed 
and a 2  = --t. Useof equations (2.12) and (4.7)-(4.9) permits one to rewrite the partition 
function (4.7) in the following form: 

(4.10) 

Here ( .  . .),,cF denotes an obvious integration over y and x fields, det xy and det x4 
correspond to the single-site determinants as was defined in 92,  and G,“, and G,“, 
correspond to the fermionic Green functions defined by (3.1)-(3.3). Using the same 
technique as in § 3, it is convenient now to perform a cumulant average of the exponents 
in (4.10) with respect to fields x and x2, respectively. I shall use only the first cumulant 
average result. It will become evident subsequently that such accuracy is sufficient to 
reproduce the result (4.4) qualitatively. Using the results in 9 3 (in particular, equations 
(3.1)-(3.3), (3.5) and (3.12)), one has for the averaged fermionic Green function the 
following result 

G > ( 4  = [-e(z>/Z,,l exP(V)C1+ exP(/3P - tu)] (4.110) 

G < ( 4  = P(-z>/Z,s> exP(PP1 e x p ( v ) P  + exP(PP - PU-  T u ) ]  (4. l lb )  

where e(t)  is the usual step function and Z,, is given by (2.10) (for N = 1). I shall 
concentrate (only €or comparison) on the half-filled band case ,U = U/2. When /3 + x ,  

one obtains, according to (2.10), 

(4.12) 

Combining (4.12) with (4.11), one obtains in the limit /3 + the following result for 

G,(t) = [ -8(~)/2]  exp(-zU/2) G,(t) = [e(-s)/2] exp(-zU/2). (4.13) 

Z,, (/3 + a) = 2 exp(/3 CT/2). 

G>(<): 
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Using (4.13) and standard definition of Fourier transform for Green function [26], one 
also obtains 

(4.14) 

where (p  + x )  

2G(wn) = l / ( iwn - U/2) + l / ( iwn + U/2) (4 .14~)  

and w, is the usual Fermi frequency: on = (271 + 1)n /a. 
for frequencies gives the partition function (4.10) in the following form: 

Use of Fourier representation of the fields q and q and the orthogonalitycondition 

2 2 

z = constant x Z:s (1 n D[%, q i 1  exp(-S[B, all) (4.15) 
i = 1  

where the quadratic form S [ P ,  91 is given by 

S[cP,al= c + @2F2 - fCPIGF2 - t@2G(Pl) (4.16) 

with frequency arguments being suppressed for abbreviation and where the summation 
is over the Matsubara frequencies. 

The functional integral (4.15) is squared because of the presence of two spin 
components. To compute the functional integral (4.15), one needs to diagonalise the 
quadratic form (4.16) for euchfixed n. It is very instructive at this point to note that the 
structure of the off-diagonal terms in (4.16) is exactly that of the first term in (4.8) which 
naturally permits one to generalise the dimer problem. This will be discussed in detail 
in § 5. IR the meantime, I choose here the conventional diagonalisation procedure which 
produces (for fixed n) the following eigenvalues: 

n 

E, , , (n)  = 1 I B ,  (4.17) 

where 

B ,  = t i W n / [ w :  + ( U / 2 ) ? ] .  (4.18) 

-r .. with this resuit, and rememberirig :ha: 
write the following expression for the partition function (4.1): 

(q7J are Fermi fe!ds, one C ~ T !  without delay 

z = constant x z : ~  ( 11 ~ , ( n ) j  . (4.19) 

Before taking logarithms o€ both sides of (4.19), it is convenient to rearrange somehow 
the infinite products in (4.21) to make the result look explicitly real. One has therefore 

I 2  2 

, j = - - T  

(4.20) 

Using (3.91, one obtains now the thermodynamic potential Q (per site and per spin) as 
I 

(4.21) 
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Finally, one needs to replace the summation by the integration in (4.21). To do so, it is 
convenient to introduce a new variable x = 4812//3U where 0 = n + $ = n. In terms of 
this variable, one can rewrite (4.21) as 

(4.22) 

The integral in (4.22) can now be calculated exactly. The calculation, although straight- 
forward, contains all elements needed for the subsequent generalisation. Because of 
that, the sketch of the calculation is presented in the Appendix. Here I provide only the 
final result for the energy (per site and per spin) 

E = (U/2)[1 - Vl + (t/w2] (4.23) 

to be compared with the result (4.4). This comparison yields exact agreement if t is 
rescaled to 4t. Such a procedure, although permissible, is not desirable in the light of 
subsequent generalisations to be presented in § 5. 

If necessary, one can easily find a justification for the above rescaling oft. Recall that 
the result (4.11) was obtained as a first cumulant average approximation. Because of 
this average, the normalising factor of Z,, has emerged in (4.11). Note also that the 
result (4.12) is valid only for the half-filled band case which I am considering only for 
comparison with (4.4). Because of the half-filled band condition the factor of 2 emerged 
in (4.12). If Ifirstextracted this factor from Z,,, included it in the normalisation constant 
in (4.15) and then performed the cumulant average, this would be equivalent to rescaling 
of t to 2t. The appearance of yet another factor of 2 will be discussed in Q 5. As already 
mentioned, such artificial rescaling is actually unnecessary when the dimer problem is 
generalised to the infinite chain and to higher dimensions. 

5. From Hubbard dimer to Hubbard model 

The results of 0 4 permit rather a natural extension. This extension is possible in view of 
the structure of the partition function (4.15). The straightforward generalisation to finite 
chains of size Nand to higher dimensions of the result (4.15) can be written now as 

where S[+, 461 is given by 

The index i runs over each lattice site in d-dimensional space while 1 is a unit vector in 
positive directions of d-dimensional lattice. The spatial Fourier transform of the fields 
q i  now can be done in the usual way, thus providing one with the following result for 
S[+, VI: 
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Here it should be noted that the technique of Fourier transforms automatically imposes 
the periodic conditions. For a dimer, this would lead to the incorrect result by effectively 
reducing the problem to the single-site monomer: but for long chains the imposition of 
the periodic boundary conditions should not cause any problem. The Fourier transform 
technique introduces an extra factor of 2 for the eigenvalues B, given by (4.18) which, 
in turn, brings the result (4.23) into agreement with the ‘exact’ result (4.4) if in addition 
the factor of 2 is extracted from Z,, prior to the operation of cumulant averaging. It is 
pssible to treat the case of finite open chains in one dimension without imposing the 
periodic boundary condition by noting that the matrix of the quadratic form (5.2) is 
tridiagonal. The determinant of the tridiagonal matrix can easily be calculated [27]. For 
higher than one dimension, it is also possible to treat the open volumes but, in the 
thermodynamic limit, boundary conditions should not play any role. Finally, the Bethe 
ansatz calculations of Lieb and Wu [7], like many other calculations of this type, assume 
the periodic boundary conditions. Thus, one is left with the following options: 

(i) to use the periodic boundary conditions and, therefore, to use the result (5.3) or 
(ii) to remove the factor of 2 in (5.3) to achieve a formal agreement with the dimer 

problem. 

With these options there are still questions as to what to do with the rescaling of Z,,. 
I choose here option (i). I shall avoid the rescaling of Z,, as well. For comparison only, 
the one-dimensional case will be treated in full detail. Extension to higher dimensions 
will then be only sketched. Use of results (4.19) and (5.1)-(5.3) permits one to write for 
the thermodynamic potential (per site and per spin) the following result (compare with 
(4.24)): 

The integral over the variable x is of the same nature as that discussed in the Appendix. 
Therefore, use of the results of the Appendix together with equation (3.14) permits one 
to write the expression for the energy per site and per spin in the following way: 

E=-[l-Sj:dk U 
2 

where E(%’) is the complete elliptic integral of the second kind and 9’i2 = y2 / (  1 + y’), 
y2 = (2t/u)’. 

Consider now the expression (5.5). First, let U+ 0 and t = 1. Using the fact that 
E( 1) = 1, one arrives at the result 

E ( U =  0) = -2/n (5.6) 
which coincides with (2.5).  Now let U+ a; then, taking into account that in this limit 
E(x2)  = (n/2)(1 - b2), one arrives at the following result ( t  = 1): 

E ( U 4  X) = - 1/2U (5.7) 
which exactly coincides with the result (3.15) (recall that (5.7) is the energy per site and 
per spin while, in (3.15), Eo is the energy per site only). I have already discussed after 
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equation (3.15) the difference between the Bethe ansatz result ( 2 . 4 ~ )  and that given by 
(3.15) (or (5.7)). To understand this difference better, I have performed a numerical 
integration of the result (2.3) of Lieb and Wu and the results of this integration are 
presented in figure 1 together with the solution (5 .5) .  As one can see from this figure, 
the solution obtained (equation (5 .5))  is in qualitative agreement with that given by 
Bethe ansatz method for all couplings. The quantitative difference between these solu- 
tions may or may not be caused by the approximate nature of our calculations. To obtain 
better insight into the nature of this discrepancy, it is desirable in the future to compare 
the results obtained with those from the weak- and strong-coupling expansions which 
contain a sufficient number of terms. The asymptotic result (5.7) (or (3.15)) suggests, 
however, that one should expect the discrepancy to persist, at least for the large-coupling- 
constant regime. It is essential also to understand better why the first cumulant average 
in x fields (see the discussion after equation (4.10)) is sufficient to reproduce the exact 
results for dimer and for the one-dimensional chain. 

The generalisation of the results obtained to the multi-dimensional case is rather 
straightforward now. Taking into account the results (5.3) and (5.4), one obtains for the 
thermodynamic potential (per site and per spin) in d-dimensions the following result: 

x lox dx In [ 1 + 16 ('1 U (2 x2 + 1)' (7 cos k,) 2 ] .  

The structure of the integral over the x variable is the same as in the one-dimensional 
case (equation (5.4)). This immediately permits one to use the results of the Appendix 
in order to write, instead of equation (5.3),  its d-dimensional analogue 

The subsequent analysis then proceeds in exactly the same way as before. 

6. Conclusions and outlook 

In $1, I posed two problems of which I would like now to remind the reader. First, if the 
quantum many-body model is exactly integrable, what could be said about the exact 
path integral solution of the same model? Secondly, how is this solution modified in 
those cases when the model is no longer integrable? 

In $0 4 and 5 a serious step towards resolution of the first problem is provided. The 
key idea of the analysis is to look for the exact solution of the simplest many-body 
problem, e.g. a dimer, which already contains all the technical difficulties of the original 
problem, and to try to reproduce this solution by means of the path integral methods. If 
the solution of this simple problem can be found, then it might be possible to generalise 
it to the larger system. The exact integrability of the Hubbard model is possible owing 
to the locality of the self-interaction term in equation (2.1). Because of this locality, it 
has been possible to find a path integral solution which, unlike the conventional Bethe 
ansatz method, is not restricted to the one-dimensional case. For the extended Hubbard 
model (equation (2.2)) the locality is lost; therefore the integrability is lost as well. The 
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presented method of calculation permits one, in principle, to perform various types of 
perturbational calculation around the 'exactly solvable' local Hubbard model. As this 
model is technically rather simple, it permits the consideration of a variety of Hubbard- 
related models. Such models could occur, for example, in disordered systems, when the 
quenched type of average is performed with use of the replica-trick method, or if one 
wants to consider the disordered Ising model written in terms of Grassmann path 
integrals. 

Finally, the Xubbard mode! has recently attracted special interest in connection with 
the phenomenon of high-temperature superconductivity [4]. It is believed to be a very 
likely candidate for a model which explains this phenomenon. 

Appendix 

To calculate the integral (4.22), three known formulae are used: 

j dx ln(x2 + A') = x ln(x2 + A * )  - 2x + 2A tan-' 

tan-' x = n/2 - l /x + 1/3x2 - . . . (A21 

tan-' x = x - x3/3 + . 9 x2 < 1. (A31 

x>l 

It is convenient actually to consider a more general integral than that given by (4.22) for 
the purposes of its further use in § 5 .  One has 

where 
a2 = 1 + (u2/2. 

The first integral in (A4) can now be directly calculated with the use of (Al)-(A3). The 
second integral in (A4) can be further rearranged as follows: 

- 2 jox dx In(x2 + a').  

Now one can use (Al)-(A3) in order to obtain the final answer for I :  

(A71 

(A81 

I = - 2 4 1  - I , )  

where Il is given by 

I' = Vl + 4 2  [$(vTQo + VF70)] 
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and 

f (a)  -- a v l x q q ( 1  + a*/2). 

The functionf(a) for any non-negative a is bounded between 0 and 1. This observation 
permits one to expand the corresponding square roots in (A8) in convergent power 
series as follows: 

i [ m  + Vl - f (a)]  = 1 - iff2(a) - &f"a) - . . * = 1 - &ff2(a). (A10) 

Consider more accurately the limits CY+ 0 (U+ x )  and CY+ x. (U+ 0). In the first 
case, one obtainsf(a) = a while, in the second case,f(a) = 1 + 2/a2. These estimates 
permit one to write, instead of (AlO), the following expressions in the above limits: 

1 - if2(@) = 1 - a2/8 -- (a+ 0) (Al l )  

and 
1-3 ,  I f 2  ( ) -  (y - 2-112 (a+ (A12) 

Combining (All)  and (A12) with (A8), one obtains 

I ,  = Vl + ay4 (a--+ 0) (A13) 
and 

I1 = 4 2  (a+ x ) .  

Comparison between (A13) and (A14) suggests that, in fact, (A13) correctly reproduces 
both a+ 0 and a+ x limits and therefore can be used instead of equation (A8) as an 
interpolating ansatz for all a. This ansatz is used in the ma' in text. 
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,?'of2 add2d in p ~ o f .  Aftei :his paper had a!:eady been comp!eted. 1 received two papers or! small Wrbbard 
clusters from Professor Callaway. The references on exact results obtained by his group and some other 
important results could be found in a recent paper [?SI devoted to the small-cluster approach to the extended 
Hubbard model. An exact solution for the four-site cluster with periodic boundary conditions was obtained. 
It would be interesting to reproduce their results by the path integral formalism. 
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